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The field of gene therapy has made considerable progress over the past several years. Adeno-associated virus (AAV)
vectors have emerged as promising and attractive tools for in vivo gene therapy. Despite the recent clinical successes
achieved with recombinant AAVs (rAAVs) for therapeutics, host immune responses against the vector and transgene
product have been observed in numerous preclinical and clinical studies. These outcomes have hampered the
advancement of AAV gene therapies, preventing them from becoming fully viable and safe medicines. The human
immune system is multidimensional and complex. Both the innate and adaptive arms of the immune system seem to play
a concerted role in the response against rAAVs. While most efforts have been focused on the role of adaptive immunity
and developing ways to overcome it, the innate immune system has also been found to have a critical function. Innate
immunity not only mediates the initial response to the vector, but also primes the adaptive immune system to launch a
more deleterious attack against the foreign vector. This Review highlights what is known about innate immune responses
against rAAVs and discusses potential strategies to circumvent these pathways.
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Introduction
Adeno-associated viruses (AAVs) are small (~26 nm), non- 
enveloped viruses that belong to the Parvoviridae family. AAVs are 
found naturally in multiple vertebrate species, including humans 
and nonhuman primates (1). Presently, 12 different AAV serotypes 
and more than 100 natural isolates have been identified (2). AAVs 
are nonpathogenic and possess relatively low immunogenicity. 
AAV is nonreplicating on its own, requiring other helper viruses, 
such as adenovirus and herpesvirus, to complete its life cycle. The 
4.7-kb single-stranded genome, which encodes for four known 
open reading frames (rep, cap, assembly-activating protein [AAP], 
and the recently discovered membrane-associated accessory pro-
tein [MAAP]; refs. 3, 4), is flanked by two hairpin structures called 
inverted terminal repeats (ITRs). In the absence of helper viruses, 
AAV remains latent in the host cell as nonreplicating epichromo-
somal DNAs, or is integrated into the host cell genome (2). Mul-
tiple comprehensive reviews describe AAV’s protein and genome 
structure (3, 5), the details of which will not be covered here.

Recombinant AAV (rAAV) vectors have emerged as one of the 
leading tools for facilitating gene therapeutics for rare monogen-
ic diseases. A typical rAAV consists of a capsid that encapsidates 
a transgene expression cassette instead of the wild-type AAV pro-

tein coding sequences. The ITRs, which are essential for guiding 
genome replication and packaging during vector production, are 
the only sequences of viral origin residing in rAAVs. Owing to their 
ease of production and versatility in infecting both dividing and 
quiescent cells in diverse tissue types, rAAVs are extremely popular 
and considered relatively safe. The rAAV genome exists predomi-
nantly as an episome in the host cell nucleus, thereby establishing 
long-term transgene expression in nonreplicating cell types (6).

The host immune response is one of the most critical road-
blocks limiting effective and long-term transgene expression (3, 
5). Preexisting neutralizing antibodies (NAbs) against the AAV 
capsids are found in a large portion of the human population as 
a result of natural AAV infection (7, 8). NAbs can effectively bind 
and neutralize rAAV, blocking transduction in target cells (9). In 
addition, cellular immune responses against the rAAV capsid and/
or transgene can trigger a strong humoral immune response and 
elicit NAbs that prevent successful vector readministration (10). 
In addition, the capsid can trigger a cytotoxic T lymphocyte–medi-
ated (CTL-mediated) response that leads to the loss of transgene 
expression (11). Furthermore, the transgene can also induce B 
cell– and T cell–mediated adaptive immune responses to generate 
transgene product–specific antibodies and CTLs. In the last few 
years, a series of studies have reported novel rAAV-related inflam-
matory toxicities in nonhuman primates (NHPs) and neonatal 
piglets (12). These include neuroinflammation in the spinal dorsal 
root ganglia after high-dose intrathecal administration, and acute 
thrombocytopenia and hepatic and renal toxicity after high-dose 
intravenous administration (13–16).

Most recently, three patients with X-linked myotubular myop-
athy (XLMTM) who were given a high dose (3 × 1014 genome cop-
ies/kg) of AT132 (rAAV8 expressing the therapeutic MTM1 trans-
gene) experienced severe hepatobiliary disease, which culminated 
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like (NOD-like) receptors (NLRs), C-type lectin receptors (CLRs), 
absent in melanoma 2–like (AIM2-like) receptors (ALRs), and reti-
noic acid–inducible gene I–like (RIG-I–like) receptors (RLRs) (29). 
These PRRs recognize and sense diverse PAMPs intrinsic to virus-
es, bacteria, fungi, and protozoa that include lipoproteins, carbo-
hydrates, lipopolysaccharides, and nucleic acids. PRRs also recog-
nize endogenous damage-associated molecular patterns (DAMPs), 
which, when gone awry, disrupt homeostasis and cause autoim-
mune diseases (30). Sensing of viral PAMPs triggers PRR-medi-
ated intracellular signaling cascades via adaptor proteins, such as 
MyD88, MAVS, or STING. These signals lead to the expression of 
host defense genes, like the MHC genes, proinflammatory cyto-
kines, chemokines, and type I and III IFNs (31). Transcription- 
independent cellular processes such as phagocytosis, autophagy, 
metabolism, cell death, and inflammasome/cytokine activation 
are also induced (32). Secreted IFNs and cytokines enhance innate 
immune responses via autocrine and paracrine mechanisms and 
induce expression of IFN-stimulated genes (ISGs) that inhibit viral 
replication and spread. Secreted cytokines and chemokines are 
also critical for inducing effective adaptive and memory immune 
responses (33). Based on their localization, PRRs can also be clas-
sified into 2 main classes: membrane-bound receptors (like TLRs) 
and intracellular receptors (like ALRs, NLRs, and cGAS).

Membrane-bound DNA sensors: TLRs
Membrane-bound receptors are found either on the cell surface or 
associated with endocytic compartments. They survey the extra-
cellular space and within endosomes for the presence of microbial 
ligands. The most likely mode of AAV vector sensing is through 
TLR-mediated pattern recognition, which can trigger an innate 
immune response and promote activation of adaptive immunity 
(34). TLRs are single-pass transmembrane proteins and are char-
acterized by a transmembrane domain, an intracellular Toll/IL-1R 
homology (TIR) domain, and an extracellular domain that binds 
to the corresponding PAMP. Humans and mice harbor 10 and 12 
known TLRs, respectively. TLRs 1–9 are common to both spe-
cies, TLR10 is expressed only in humans, and TLR11–TLR13 are 
exclusive to mice (35–37). Because of these differences, preclinical 
investigation in mice may not fully recapitulate how humans may 
respond to gene therapy vectors. TLR1, 2, 4, 5, 6, and 10 (glyco-
protein-recognizing receptors) are commonly located on the cell 
surface, whereas TLR3, 7, 8, and 9 (nucleic acid–specific recep-
tors) are generally found on the endosomal membrane (38). TLRs 
that have been implicated in initiating inflammatory respons-
es to viruses are TLR2 (glycoproteins and lipoproteins), TLR3  
(dsRNA), TLR4 (glycoproteins and bacterial LPS), TLR7 (ssRNA), 
TLR8 (ssRNA), and TLR9 (unmethylated CpG [cytosine-phos-
phate-guanine] DNA) (39). TLRs are mostly found in immune 
cells, including DCs, macrophages, B cells, and some T cells, but 
are also found in some nonimmune cells, such as fibroblasts and 
epithelial cells (40).

Receptor engagement with PAMPs or DAMPs leads to the 
formation of M-shaped TLR dimers or multimers, which in turn 
causes the multimerization of cytoplasmic TIR domains that 
recruit downstream adaptors (41). With the exception of TLR3, 
TLRs recruit the signaling adaptor MyD88, which mediates the 
phosphorylation of IRAK4 and IRAK1 (Figure 1). As illustrated in 

in their deaths (17–19). While the precise mechanisms that caused 
these toxicities are under investigation, one hypothesis attributes 
this effect to preexisting antibodies against AAV, resulting in acti-
vation of innate immunity and/or the classical pathway of the 
complement system. Two of the three patients who died experi-
enced bacterial infections and sepsis, and all three reportedly had 
preexisting hepatobiliary disease that may have aggravated the 
challenge. In addition, these patients were at the higher end of 
the age cutoff and the lower range of normal body weight — fac-
tors that could further confound any proposed explanation (20). 
Several other adverse events of varying severity have occurred 
in patients receiving high systemic doses of rAAVs to treat spinal 
muscular atrophy type I, XLMTM, and Duchenne muscular dys-
trophy. These outcomes also seem to have largely resulted from 
innate immune and cellular immune responses to the vector (21–
24). Vector manufacturing and purification methods, a relatively 
unattributed factor, could also be a contributor to adverse effects 
(25, 26). Thus, it is now more important than ever to understand 
the mechanisms of immune activation against AAV to improve the 
safety of these gene therapy approaches (17, 18, 25).

Most AAV vector biology studies have concentrated on dis-
secting the mechanisms of adaptive immune response to rAAVs. 
This bias stemmed from an early report showing that AAV2 vec-
tors conferred minimal and transient activation of innate immuni-
ty, in contrast to the potent and prolonged adaptive responses elic-
ited by adenovirus vectors (27). Thus, it was presumed that innate 
immunity against rAAVs is inconsequential. However, the innate 
immune system is the first line of defense against foreign patho-
gens and provides activation signals that are critical for adaptive 
immunity (28). Unfortunately, little is known about innate immu-
nogenicity to rAAVs in humans. Here, we will briefly review the 
innate immune pathways that are implicated as being stimulated 
by rAAVs, and discuss the mechanisms that are known to be, or 
might be, activated in response to rAAV infection and subsequent 
suppression of transgene expression. We will also present selected 
strategies that show promise for overcoming the innate immune 
barriers to human gene therapy.

Sensing of AAV vector elements
Recognition of foreign viral particles by the innate immune 
response is achieved through continuous monitoring for structural 
motifs that are unique to non-self organisms, called pathogen-as-
sociated molecular patterns (PAMPs). Monitoring is carried out 
by immune receptors called pattern recognition receptors (PRRs). 
PRRs are expressed at high levels by innate immune cells, such 
as macrophages and dendritic cells (DCs). They can recognize 
microbial products on the cell surface, within the phagolysosome, 
in cytoplasmic compartments, and in the nucleus. PRR-medi-
ated detection of AAV vector components and products (capsid, 
genome, transcript, etc.) is understudied. Figure 1 depicts the 
known and implicated innate immune pathways that rAAVs may 
activate upon infection. Related factors involved in the underlying 
mechanisms solved through other in vivo and in vitro model sys-
tems are also shown.

Based on protein domain homology, PRRs have been divided 
into several families: TLRs, DNA sensors such as cyclic GMP-AMP 
synthase (cGAS), nucleotide-binding and oligomerization domain–
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Figure 1. Detection of AAV vector elements by PRRs. rAAV capsids can activate TLR2 on the cell surface or endosomal membrane, which subsequently 
recruits MyD88 and phosphorylates IRAKs. rAAV capsids may break open in the endosome or lysosome and expose the genome to TLR9. Upon binding 
DNA, TLR9 activates the MyD88/IRAK pathway to induce proinflammatory cytokines like TNF-α and IL-6 (38). Vector genomes may also become 
exposed within the cytosol. Alternatively, rAAV-mediated stress may release mitochondrial DNA (mtDNA) to activate cytosolic DNA sensors. Upon 
binding DNA, cGAS promotes cGAMP synthesis, which activates the STING/IRF3 pathway and upregulates type I IFNs (146). IFNs and cytokines induce 
expression of ISGs and antiviral responses. IFI16 can promote cGAS-mediated production of cGAMP to activate STING. Upon binding DNA, AIM2 and IFI16 
form the inflammasome and promote maturation of IL-1β and IL-18 (82). Nuclear-localized rAAV genomes may also activate cGAS and IFI16. Nuclear cGAS 
can induce IFN-β production by stabilizing IFI16 (84), which can be exported into the cytoplasm to activate the inflammasome pathway (147). IFI16 also 
silences viral gene expression in the nucleus (76). AIM2 is also found in the nucleus (85), but it is not known whether AIM2 can sense viral DNA in nuclei. 
The cytosolic RNA sensors RIG-I and MDA5 can recognize RNA transcripts from rAAV and activate the TBK/IRF pathway to induce IFNs (88, 89, 92). 
Pathways that are only speculated to be involved are indicated by question marks. Pathways only implicated by circumstantial evidence are indicated 
with dashed arrows.
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Notably, use of self-complementary AAV (scAAV) vectors 
was shown to increase vector potency by providing notably faster 
and stronger transgene expression, allowing for lower and possi-
bly safer vector doses (52). However, this difference in genome 
configuration potentially influences the innate response as well. 
The use of scAAV genomes was revealed to increase the innate 
immune response to the transgene compared with single-stranded 
vectors (53, 54). This increase was also attributed to an amplified 
activation of the TLR9/MyD88 pathway (34).

Apart from TLR9 activation, increased transcription of TLR2, 
which recognizes microbial protein and glycolipid structures, was 
also observed upon rAAV infection and is consistent with reports 
demonstrating its role in sensing non-enveloped viral particles 
(55–57). This result raised the possibility of TLR2’s involvement 
in innate immunity against rAAVs (53). In subsequent studies, 
human cells were shown to sense AAV capsid through TLR2 (Fig-
ure 1) (58). Finally, MyD88, a B cell–intrinsic downstream media-
tor of TLR2 and TLR9 signaling, has been suggested to be pivotal 
in the formation of Th1-dependent antibodies to AAV (59).

Several strategies to overcome TLR signaling are summa-
rized in Table 1. As mentioned above, preventing TLR9 signaling 
by depleting CpG dinucleotides in the vector genome has been 
shown to enhance transgene expression and reduce infiltration 
of effector T cells in the muscle (48). Incorporation of TLR9- 
inhibitory (TLR9i) sequences has recently been reported to reduce 
rAAV-associated immune responses in mice and pigs (60, 61).

Detection of rAAV genomes by cytosolic DNA 
sensors
Several cytosolic DNA sensors are known to detect viral DNA 
(62), including cGAS (63), IFN-inducible protein 16 (IFI16) (64), 
and AIM2 (65) (summarized in Figure 1). They bind DNA in a 
sequence-independent but length- and structure-dependent 
manner. cGAS binds double-stranded DNA (dsDNA) or DNA-
RNA hybrids that are preferentially longer than 36 bp (66–69). 

Figure 1, activated IRAKs lead to transcription of several proin-
flammatory cytokines, including TNF-α and IL-6 (35). Converse-
ly, TLR3 uses TRIF as the adaptor molecule for TRAF6-mediated 
activation of TAK1 and production of inflammatory cytokines. 
Additionally, TLR3 and TLR4 are capable of employing TRIF to 
induce transcription of type I IFNs through a pathway involving 
TANK-binding kinase-1 (TBK1) and interferon regulatory factor 
3 (IRF3), which contribute to the antiviral inflammatory response 
(42, 43). TLR7, 8, and 9 can also induce type I IFNs by employing 
the MyD88 signaling pathway (44).

Innate immunity against rAAVs is remarkably muted com-
pared with that against adenoviruses, because rAAVs seem to 
lack the inflammatory cues to confer an effective CTL response 
against the transduced cell (27, 45). TLR9, however, plays a vital 
role in shaping immune responses to both transgene and capsid. 
TLR9 binds specifically to unmethylated CpG dinucleotides, 
which are present in the genomes of bacteria and DNA viruses. 
TLR9-mediated sensing of CpG motifs within rAAV genomes may 
occur during endosomal trafficking, where virions with partially 
exposed genomes are recognized (Figure 1) (46). Alternatively, 
degradation of the viral capsid in the lysosome can expose the 
genome to TLR9, which then signals through MyD88 to activate 
NF-κB and IRF7 to regulate type I IFNs and ISGs (Figure 1) (47). 
Induction of type I IFNs through TLR9 and MyD88 signaling was 
shown to be transgene- and serotype-independent (48). In this 
work, rAAV-delivered transgene expression was eliminated in 
WT mice but not in TLR9-knockout animals. In addition, when 
the transgene was depleted of CpG dinucleotides, expression was 
retained for more than 90 days, while vectors carrying unmodified 
transgenes conferred a loss of expression after 30 days (48). Stud-
ies in mice have also revealed that while antibody responses to the 
transgene were mostly independent of the innate immune sensors 
investigated, the TLR9/MyD88 pathway was critical for priming 
a CD8+ T cell response to AAV capsid and the transgene product 
following intramuscular injection of vector (34, 47, 49–51).

Table 1. Strategies to overcome AAV genome sensing

Prevention strategy Proposed or demonstrated methods
Depleting the vector genome of CpGs • CpG-depleted AAVrh32.33 vectors injected in the muscle lead to persistent transgene expression accompanied by reduced infiltration of 

effector T cells (48).
• Codon optimization to generate CpG-free hF.IX vectors was used for hemophilia trials, but the conclusions were not definitive (148, 149).

TLR-inhibitory sequences • TLR9-inhibitory DNA sequences derived from human telomeres and composed of multiple copies of the TTAGGG motif are incorporated into 
the rAAV genome. This approach was reported to reduce rAAV-associated immune responses in mice and pigs (60, 61).
• The ability of TTAGGG motifs to inhibit cGAS and AIM2 inflammasome activation has also been documented (86, 87).

Hydroxychloroquine (HCQ) • The antimalarial agent HCQ has also shown immunomodulatory effects. Sequestration and accumulation of HCQ within the lysosomal 
compartment hinders intraorganellar processes, like nucleic acid assembly and the ability of TLR9 to bind DNA (150–152).
• HCQ administration 1 hour before rAAV treatment has been shown to increase transduction efficiency in both murine and human tissues, 
and within RPE and photoreceptor cells in retinal explants (77).
• HCQ inhibits binding of DNA not only to TLR9, but also to cGAS (77).

Blocking reverse-strand transcription • Engineering ITRs that lack promoter function or have weak promoter function may decrease the formation of dsRNAs.
• Engineering the vector by mutating the transcription initiation site at the 3′-ITR to block transcription may decrease the formation  
of dsRNAs (90).
• Several viruses, like hepatitis C virus, Sendai virus, and herpes simplex virus 1 (HSV1), actively inhibit RIG-I function. Expression of factors 
like hepatic selenoprotein (94), RNA helicase SKIV2L (95), or the long noncoding RNA lncATV (96) are increased upon viral infection, leading 
to the suppression of RIG-I activation. Investigation into how viruses suppress RLR activation may uncover novel approaches that prevent 
long-term immunity in AAV-transduced cells.
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sensors, RLRs play key roles in virus recognition (88, 89). The 
members of this family include the prototypic RIG-I, MDA5, and 
LGP2. RIG-I and MDA5 have similar domain structures: two tan-
dem caspase activation and recruitment domains (2CARDs) at the 
N-terminus, a central DExH-box helicase domain, and a C-ter-
minal regulatory domain. RIG-I recognizes 5′-triphosphorylated 
blunt-ended short dsRNA or single-stranded RNA hairpins of 
positive- and negative-strand viruses. MDA5, in contrast, prefer-
entially recognizes long dsRNA and binds to the RNA backbone 
of dsRNA viruses or dsRNA replication intermediates of positive- 
strand RNA viruses. LGP2 has no signaling activity, because it 
lacks N-terminal 2CARDs, but is able to regulate RIG-I and MDA5 
signaling via its ability to bind RNA (88, 89). MDA5 and RIG-I 
have a common signaling adaptor, MAVS, which induces type I 
IFN production upon virus infection (Figure 1).

Although DNA-sensing molecules mediate innate immunity 
against AAVs, a dsRNA-mediated response may contribute to the 
therapeutic failure at later stages of vector transduction. The AAV 
ITR has inherent promoter activity (90, 91). Therefore, the pres-
ence of 5′- and 3′-ITRs in rAAV genomes may result in the pro-
duction of both sense and antisense RNAs that can form dsRNA 
intermediates in the cytosol. These dsRNA molecules are subject 
to recognition by MDA5 and RIG-I, leading to production of IFN-β 
(92). Similarly, RIG-I and MDA5 were also found to be upregulat-
ed in the primate retina after long-term AAV transduction (93).

As with other cytosolic sensors, the impact of RLRs on rAAV is 
still under investigation. Several viruses, like hepatitis C virus, Sen-
dai virus, and HSV1, actively inhibit RIG-I function. Expression of 
factors like hepatic selenoprotein (94), RNA helicase SKIV2L (95), 
or the long noncoding RNA lncATV (96) is increased upon viral 
infection, leading to the suppression of RIG-I activation. Investi-
gation into how viruses suppress RLR activation may uncover nov-
el approaches that prevent long-term immunity in AAV-transduc-
ed cells. Additional potential approaches are described in Table 1.

Capsid immunity and the complement system
The rAAV protein capsid can encounter multiple aspects of the 
host’s immune system at different stages, posing considerable 
barriers to effective gene delivery and long-term gene expres-
sion. Capsid-based inflammatory response, as noted earlier, is 
potentially mediated by TLR2 (Figure 1). However, the principal 
concern with respect to immunity against the AAV capsid are 
preexisting NAbs. Notably, empty AAV capsids on their own can 
induce innate immune responses (58, 97). A substantial portion of 
the human population develop anti-AAV NAbs against naturally 
circulating AAVs, which can be detected in children as young as 
2 years of age (7, 8, 98, 99). NAbs are typically characterized by 
broad cross-reactivity across different serotypes. NAb-mediated 
reduction in vector transduction was first documented in a factor 
IX (AAV2-F.IX) liver gene transfer trial (11). Two individuals in the 
cohort who were given a high vector dose had NAb titers of 1:2 and 
1:17. As a consequence, they displayed extremely low circulating 
F.IX levels upon vector treatment (11). NHPs, which are natural 
hosts for AAV8, lack the capacity to be transduced by high doses 
of AAV8-F.IX when NAb titers are as low as 1:5 (100). NAb titers 
are predicted to reduce patient inclusion for rare disease therapies 
by as much as 50% (7). Fortunately, gene therapy via direct CNS 

It dimerizes upon binding to DNA and triggers a cascade involv-
ing STING and TBK1 to induce the transcription of type I IFN 
genes and antiviral cytokines, such as TNF-α and IL-6 (70). Mice 
deficient in cGAS and STING are more susceptible to lethal her-
pes simplex virus 1 (HSV1) infection because of a decrease in 
type I IFN response (71, 72). IFI16 is a member of the pyrin and 
HIN (hematopoietic IFN-inducible nuclear) domain–containing 
(PYHIN) family of proteins (65). It has emerged as a prominent 
DNA sensor of HSVs (73). IFI16 exists in both the cytosol and the 
nucleus and is activated by both single-stranded DNA and dsDNA 
(64). The optimal length of DNA that serves as a ligand for IFI16 
is 70 bp (74). IFI16 may cooperate with the cGAS/STING pathway 
in some contexts (64, 75). IFI16 also silences viral gene expres-
sion by facilitating heterochromatinization of the viral genome in 
the nucleus (76). AIM2, another PYHIN family member, binds to 
DNA stretches about 80 bp in length (74). AIM2 can bind dsDNA 
in the cytoplasm and forms an inflammasome with ASC, activates 
caspase-1, and produces mature IL-1β and IL-18. Knockdown of 
AIM2 inhibits the activation of caspase-1 in response to the pres-
ence of viral dsDNA (65).

The AAV genome contains elements that can potentially acti-
vate cytosolic DNA sensors, such as the ITR hairpin structures. A 
recent study showed that rAAV induces the expression of DNA 
sensors including cGAS and antiviral genes, such as TNF-α and 
IFN-γ (77). In this study, rAAV transduction was 6-fold higher in 
cGAS–/– mouse embryonic fibroblasts than in WT fibroblasts. How 
rAAV activates DNA sensors is not completely known. The dogma 
is that the rAAV genome is encapsidated until the virion arrives in 
the nucleus, where the genome is then released. One hypothesis 
is that proteasomal degradation of the capsid exposes the AAV 
genome (78). Another possibility is that AAV infection stresses 
the cell to release mitochondrial DNA into the cytosol, which then 
activates the cytosolic DNA sensors (Figure 1) (79, 80). Alterna-
tively, DNA sensors may detect the AAV genome in the nucleus. 
IFI16 can shuttle between the nucleus and cytoplasm and recog-
nizes viral DNA in the nucleus by scanning along DNA duplexes 
(Figure 1) (81). Upon binding to viral DNA, IFI16 can move to the 
cytosol to activate the inflammasome pathway (74, 82, 83). IFI16 is 
stabilized by nuclear cGAS and induces IFN-β production through 
an unknown mechanism (Figure 1) (84). Although AIM2 is known 
to sense DNA damage in the nucleus and induces inflammasome 
activation (85), whether AIM2 can sense viral DNA in the nucle-
us is unknown. Further studies are required to elucidate whether 
AAV infection activates the AIM2 inflammasome pathway.

Strategies to overcome cytosolic DNA sensors have not been 
heavily explored (Table 1), since their roles for limiting rAAV effi-
cacy are less established. The ability of TLR9i motifs and hydroxy-
chloroquine (HCQ) to inhibit cGAS and AIM2 inflammasome 
activation has been documented (77, 86, 87). HCQ administration 
1 hour before rAAV treatment has been shown to increase transduc-
tion efficiency in both murine and human tissues, and within retinal 
pigment epithelial and photoreceptor cells in retinal explants (77).

Innate immunity against transgene transcripts: 
RNA sensors
Cytosolic RIG-I–like receptors (RLRs) are expressed in almost 
all mammalian cell types. As the main family of cytosolic RNA 
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or eye delivery is reasonably well tolerated in patients with NAbs, 
since the brain and the eye are considered immune-privileged 
organs, though they are still not completely shielded from circulat-
ing NAbs (101–104). The presence of NAbs is bound to profoundly 
impact the efficacy of AAV-mediated gene transfer and should be 
measured carefully before enrollment of prospective subjects.

In addition to causing a lack of therapeutic efficacy, the pres-
ence of capsid NAbs can also trigger complement activation, 
which at high doses may become a safety concern. The comple-
ment system comprises over 30 fluid-phase proteins and several 
membrane-bound proteins that are an essential component of 
the host innate immune system. The main site of synthesis for 
most complement proteins is the liver. Several other tissues also 
produce various complement components. Soluble complement 
components are distributed throughout the body’s tissues and 
fluids. Many key activation components of complement exist as 
inactive precursors and undergo a cascade of proteolytic cleavage 
events and activation steps to generate the final products of the 
complement system (Figure 2) (105).

Depending on the pathogenic context, the complement sys-
tem cascade is initiated by three different pathways — classical, 
lectin, and alternative — all of which converge at the level of com-

plement protein C3 and lead to the formation of the membrane 
attack complex (MAC; terminal pathway). The classical pathway 
is activated upon recognition of antigen-antibody immune com-
plexes by the C1 complex. The lectin pathway is activated upon 
recognition of sugars on pathogen surfaces by mannose-binding 
lectins (MBLs). Under normal physiological conditions, the alter-
native pathway is constitutively active at low levels and serves as 
a surveillance system to remove invading pathogens before the 
development of adaptive responses. All pathways cleave their 
precursor factors and converge at C3 convertase, which cleaves 
C3 into functional fragments, C3a and C3b. As illustrated in Fig-
ure 2, C3b acts as an opsonin or cleaves C5 to initiate a cascade to 
form MAC, which is composed of C5b to C9, on the surface of a 
pathogen or pathogen-infected cell for lysis (105). Opsonization 
of pathogens marks their removal by phagocytes and cell lysis. 
This action also serves as a link between innate and adaptive 
immunity (106). Antigens coated with complement activation 
fragments, like C3dg, assist in initiating a powerful costimula-
tory signal by ligating the B cell receptor to complement recep-
tor 2 (CR2) on B cells, thereby reducing the threshold of B cell 
receptor activation and increasing the amplitude of the antibody 
response (107). Furthermore, C3a and C5a are involved in main-

Figure 2. Complement activation by AAVs. Antibodies bound to AAV particles are recognized by the complement protein C1 complex. When high doses 
of AAV are administered, AAV-antibody complex activates the classical pathway of complement, eventually leading to the formation of the membrane 
attack complex (MAC) (105). The target of the MAC ring during AAV infection is unclear. When low AAV doses are administered, C3b can bind to the AAV 
capsid, where it is converted to iC3b and subsequently to C3d by factor I and other cofactors. Cleavage fragments of C3 opsonize the target structure and 
serve as bridging molecules with receptors on the surface of the phagocytes. CR1 and CR3 expressed on the macrophage surface interact with C3b- or 
iC3b-opsonized AAV particles, leading to phagocytosis and macrophage activation. CR3 interaction with iC3b-opsonized AAV virions on DC surfaces also 
results in endocytosis and antigen presentation to naive T cells. C3d-bound AAVs can be recognized by CR2 on B cell surfaces. Co-ligation of CR2 with B cell 
receptor (BCR) results in augmented signaling that effectively lowers the threshold for B cell clonal expansion. Alternatively, DCs can also trap the C3d-op-
sonized AAV via CR2 and present the antigen to naive or previously antigen-engaged B cells during the processes of affinity maturation, isotype switching, 
and the generation of effector and memory B cells.
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taining T cell viability, proliferation, and differentiation as illus-
trated in Figure 2 (108).

Over the years, there has been scant evidence of AAV-me-
diated complement activation, and the commonly held belief 
was that the complement system does not play a considerable 
role in innate response to AAVs. It is also noteworthy that there 
are no currently published large-animal data to support comple-
ment activation by immune complex formation. Complement 
activation in humans upon administration of high doses of rAAV 
is also based on the available pathological evidence, and hence 
some of the mechanisms proposed in this section are speculative. 
Nonetheless, recent in vitro studies showed that the viral capsid 
interacts with C3 fragments, leading to enhanced uptake of AAV2 
vectors by macrophages (109). This uptake was abrogated by heat- 
inactivation or in C3-depleted mouse/human serum. Immunopre-
cipitation studies also confirmed that the AAV capsid binds to the 
complement protein iC3b and the complement-inhibitory protein 
factor H (FH) in serum. C3b is generated by C3 activation through 
the alternative or the classical pathway. C3b is then deposited on 
viral surfaces and has two possible fates: (i) C3b can then recruit 
factor I (FI) in the presence of a membrane-bound (e.g., CD46 or 
CR1) or a soluble (e.g., FH) cofactor that rapidly converts C3b to 

iC3b, which in turn limits downstream complement activation. 
(ii) Alternatively, C3b can recruit factor B, which, in the absence 
of a cofactor and FI, results in the formation of the C3 convertase 
and complement activation (106). Many pathogens have evolved 
mechanisms to evade direct activation of the complement system 
by mimicking host surfaces, thereby recruiting FH (110). At low-
er doses, AAV associates with both FH and iC3b, which suggests 
that AAVs actively inhibit the complement cascade (Figure 2). 
Although complement activation can be avoided, conversion of 
AAV-bound C3b to iC3b might serve as an opsonin to increase AAV 
uptake by macrophages. This possibility may explain why treat-
ments with AAV1, AAV2, and AAV8 vectors are associated with 
increased macrophage activation and a corresponding increase in 
the activation of cytokines, like macrophage inflammatory protein 
2 (MIP-2), IL-1β, IL-8, and MIP-1β (109).

Interestingly, higher doses of AAV significantly activate com-
plement over baseline — a response that can be blocked by EGTA, 
which chelates Ca2+ and is essential for classical and lectin path-
way activation. This finding strongly suggests that complement 
activation by AAV may be primarily antibody-dependent (Figure 
2) (109). Indeed, involvement of the classical pathway was con-
firmed by the loss of complement activation in IgG-depleted 

Table 2. Strategies to overcome capsid immunity

Prevention strategy Proposed or demonstrated methods
Pharmacological agents • Rituximab is an anti-CD20 mAb that leads to B cell depletion (9).

• Rapamycin is a macrolide compound that inhibits T and B cell activation by reducing their sensitivity to IL-2 via mTOR inhibition (153).
• Rituximab and rapamycin administration, along with serotype switching (154), has also been demonstrated to induce immune tolerance and 
allows repeated rAAV administrations (155–158).

Nonspecific cleaving of circulating IgGs • Treatment with IdeS, a cysteine protease derived from Streptococcus pyogenes (and its homolog IdeZ, which was identified from S. equi ssp. 
zooepidemicus), may provide complete, rapid, and transient NAb-free windows for AAV vector delivery to patients (127, 128).

Plasmapheresis • Removal of large–molecular weight molecules, like antibodies from the blood, can ensure that there is minimal contact between the vector 
and NAbs. The technique has been used for successful and sustained gene transfer in NHPs and humans (122, 123).
• AAV-specific plasmapheresis column was used to selectively and effectively deplete anti-AAV NAbs without affecting the total 
immunoglobulin pool from the plasma in NHPs (124).

Epitope masking • Coating the AAV surface with lipids or cell-derived extracellular vesicles to mask AAV epitopes from NAbs can prevent neutralization of vector 
particles (125).
• Exosome-encapsulated AAVs (exo-AAV5 and exo-AAV8) have been shown to increase hF.IX expression ~10-fold, along with a corresponding 
increase in transduction efficiency (126).

Structural modifications • Structural studies have proposed that NAb recognition sites are localized in specific areas of the AAV capsid (115). Modifying these regions 
may yield AAV mutants that have the ability to evade NAb recognition without affecting transduction efficiency or tissue tropism (116).
• Capsid residue 265 within VP1 of AAV2 was mutated to create AAV2.5. This change resulted in a capsid that was not recognized by mAb A20 
(antibody that binds AAV2 and AAV3 capsids) (117), leading to enhanced transduction of skeletal muscle (118). 

Directed evolution • Directed evolution can be used to identify AAV variants with decreased sensitivity to NAbs by iterative rounds of mutational screening to 
evolve AAV variants under selection pressure (9). This is achieved either by error-prone PCR to generate a library with random mutations or by 
creation of a DNA-shuffled library using preexisting serotypes as templates (119).
• AAV-DJ was generated from 8 serotypes in primary human hepatocytes in the presence of pooled human intravenous immunoglobulin (IVIG) 
(120). This non-natural capsid is composed of residues from AAV2, AAV8, and AAV9 serotypes and transduces liver more efficiently in mice 
injected with IVIG as compared with its parental capsid.
• Variants have also been isolated from humanized mouse models. These mutants escape NAb recognition in human sera and can transduce 
human hepatocytes more efficiently than preexisting AAV serotypes (121). The effectiveness of these capsids still needs to be tested in clinical 
settings.

Alternative strategies • Modifying the route of administration can bypass encountering NAbs in circulation (125).
• Saline flushing with or without balloon catheter isolation in hepatic circulation also minimized the inhibitory effect of NAbs (159).
• Use of less seroprevalent capsids may evade detection by NAbs (160).
• Using empty capsids as decoys also helps in reducing the functionally effective levels of NAbs in circulation. Moreover, because empty capsids 
are not immunologically inert, mutant empty capsids could be used to reduce the effects of undesired immune activation (129).
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(pDCs) in humans. Other studies have shown that anti–AAV cap-
sid IgG2 antibody production is not dependent on any specific 
TLR alone, but on intrinsic MyD88 signaling in B cells, and not 
T cells (34, 59). A possible explanation for this observation is that 
stimulation of the TLR9/MyD88 pathway, particularly in mono-
cyte-derived DCs, may drive differentiation of follicular Th cells 
and promote robust IgG2c production by B cells/plasma cells. 
However, IgG1 and IgM antibodies were generated independent 
of MyD88 activation, indicating differential kinetics. Since it is 
well established that T cell activation is critical for a robust humor-
al immune response, this could be attributed to a shift in activation 
of Th2 CD4+ T cells as opposed to a Th1 response and subsequent 
IgG subclass induction (33).

Intravenous administration of AAV was seen to induce tran-
sient expression of TNF-α, RANTES (regulated on activation, 
normal T cell expressed, and secreted), IP-10, MIP-1β, MCP-
1, and MIP-2 mRNAs in the liver. These transcripts return to 
baseline levels after 6 hours. This activation was revealed to be 
dependent on Kupffer cells, the resident macrophages of the liv-
er (27). Another study also showed that scAAV administration 
increased macrophage infiltration in the liver 6-fold, an effect 
that was reversed by administration of TLR9i oligonucleotides 
(53). Contrary to these findings, further studies demonstrated 
that innate immune recognition of AAV takes place in mouse or 
human pDCs, and not in conventional DCs (cDCs), Kupffer cells, 
or macrophages (131). Transient depletion of CD11c cells in mice 
significantly reduced CD8+ T cell response. However, inactiva-
tion of Kupffer cells and macrophages by the macrophage inhibi-
tor GdCl3 did not affect the response (131).

Most reports that investigate MHC class I presentation of 
AAV capsid regard the target cells that are flagged for destruction 
by CD8+ T cells. This phenomenon is presumably a consequence 
of cross-priming of CD8+ T cells from antigen presentation by 
APCs (132, 133). However, some studies have highlighted the 
vital participation of professional APCs in MHC class I–mediat-
ed presentation of antigens originating from the AAV capsid or 
the transgene in eliciting a CD8+ T cell response and activation 
of a humoral response. Initial in vitro data in DCs isolated from 

serum (109). Moreover, activation of innate immune-specific 
chemokines by AAV-complement complexes is not enhanced at 
these concentrations. Nevertheless, mice deficient in CR1/2 or 
C3 were less capable of mounting a humoral immune response 
to AAV than WT mice, indicating a role for complement in the 
production of AAV-specific antibodies. As discussed above, 
co-engagement of CR2 with the B cell antigen receptor enhances 
antibody production (111, 112). Additional evidence of comple-
ment activation in response to AAVs arose from clinical trials for 
Duchenne muscular dystrophy in humans. A few patients who 
were given high doses of rAAV in trials (ClinicalTrials.gov iden-
tifiers: NCT03362502 and NCT03368742) experienced transient 
and/or acute renal impairment, accompanied by activation of the 
complement system (113, 114).

Multiple strategies to overcome capsid immunity and evasion 
of NAbs have been developed throughout the years. Structural 
modification of NAb recognition sites and directed evolution to 
generate novel AAV capsids have also been found to be effective 
strategies to evade NAbs in preclinical studies (9, 115–121). Addi-
tional strategies that have proven effective in mice and NHPs 
include plasmapheresis, rAAV epitope masking, use of IgG- 
degrading enzymes, and injection of empty AAV capsids as decoys 
(122–129). Additional promising strategies are described in Table 2.

Strategies to directly overcome complement activation have 
been widely developed. These modalities are now being tested in 
the context of AAV-based gene therapies (Table 3). One of the more 
promising strategies is the use of C3 modulator drugs, such as APL-
9. APL-9 prevents C3 activation, effectively blocking all three path-
ways of complement activation. APL-9, when used in conjunction 
with AAV administration, demonstrated control of complement 
within 1 hour of administration that lasted up to 12 hours (130).

Cell types contributing to innate immunity
There is limited literature on the types of cells that are involved in 
mounting an innate immune response to AAVs. It is known that 
PRRs like cGAS are expressed in all cell types but are particularly 
enriched in professional antigen-presenting cells (APCs). TLRs, 
especially TLR9, are restricted to B cells and plasmacytoid DCs 

Table 3. Strategies to overcome complement activation

Prevention strategy Proposed or demonstrated methods
Systemic complement inhibition • Eculizumab is an mAb that inhibits component C5 and prevents MAC formation. It is approved for the treatment of rare disorders involving 

complement hyperactivation, particularly paroxysmal nocturnal hemoglobinuria (PNH), atypical hemolytic uremic syndrome, and refractory 
generalized myasthenia gravis (161).
• Therapeutic interventions that block different molecules of the complement pathway, including naturally occurring human inhibitory proteins 
(e.g., FH or factor I), blocking antibodies, peptides, small-molecule inhibitors, aptamers, siRNAs, and antisense oligonucleotides, are being 
developed and have been attempted for the treatment of diseases like age-related macular degeneration, neuromyelitis optica, and PNH with 
mixed results (162).

Neutralizing antibody reduction • Since complement activation by AAVs takes place via the classical pathway and is triggered by antibody binding, approaches to reduce NAbs 
should also mitigate complement activation (109).
• Pharmacological agents like rapamycin and rituximab and encapsulating AAVs inside exosomes can be potential methods to minimize AAV 
interaction with antibodies, and hence eliminate complement activation.

Suppressing C3 activation • One strategy being used by Apellis Pharmaceuticals is the use of APL-9 in conjunction with AAV administration. APL-9 is a PEGylated synthetic 
cyclic peptide that binds specifically to C3 and prevents C3 activation, effectively blocking all 3 pathways of complement activation. APL-9 
demonstrated control of complement within 1 hour of administration that lasted up to 12 hours. Multiple doses tested achieved complete 
suppression of the AH50 hemolytic activity. APL-9 was well tolerated with no serious adverse events reported (130).
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Figure 3. The role of APC-mediated immune responses toward AAV vectors. (A) The mechanism of DC activation by rAAV. Vector genome sensing by 
TLR9 in pDCs’ endosomes triggers the activation of the TLR9/MyD88 signaling pathway that culminates in pDCs producing type I IFNs that directly signal 
to immature cDCs. This signaling event is required for effective priming and leads to activation and licensing of immature cDCs to mature cDCs. Licensing 
of cDCs enhances their ability to activate T cells. Activated cDCs also interact with CD4+ T cells, which may additionally contribute to licensing the cDCs to 
activate rAAV capsid–specific CD8+ T cells. Activated CD4+ Th cells also promote antibody formation against the rAAV capsid. (B) Depiction of rAAV- 
specific antigen presentation by APCs. Upon entry of AAV virions into cells by endocytosis, rAAV capsids can either be degraded in lysosomes or escape 
into the cytoplasm. Transcription and translation of the vector genome in the nucleus generate transgene proteins that, along with viral capsids, can be 
ubiquitylated and degraded in the proteasome into small peptides. These peptides are transported into the Golgi/endoplasmic reticulum by transporter 
associated with antigen presentation (TAP), loaded onto the MHC class I molecule, and presented on the surface of the target cell. This causes the cell to 
be recognized by a CD8+ T cell and, finally, eliminated by a capsid-specific CTL response. Capsid peptides are also loaded onto MHC class II molecules for 
presentation to CD4+ T cells for subsequent B cell activation and antibody production.
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Conclusions
We have discussed the current obstacles that innate immunity 
poses for the successful implementation of rAAVs as reliable gene 
therapy medications. Although safety is the principal goal for all 
gene therapies, these therapies also represent the only treatment 
option for many rare and chronic genetic diseases. Therefore, 
development of these drugs requires that we consider a balance 
between the promise of a lifesaving treatment and the related 
risks, known or unknown. Two AAV-based drugs (Luxturna and 
Zolgensma) were recently approved by the FDA, and several clini-
cal trials using AAV-based therapies are in progress (144, 145). The 
information gathered and the knowledge gained from these trials 
could shape the future direction of the field.

AAVs are evidenced to be less immunogenic than other viral 
vector platforms but can still mount a substantially high immune 
response in a dose-dependent manner. Innate immunity mounts 
rapidly, is nonspecific, and does not result in immunological mem-
ory. The resultant responses of the innate immune system are usu-
ally brief and mainly arise as soon as the vectors are administered. 
Although the activation of innate immunity in humans by rAAVs 
is still debatable, several occurrences of serious adverse events 
(SAEs), some leading to fatalities, in AAV gene therapy trials were 
suspected to involve the innate immune response. Importantly, 
these reports have yet to be peer-reviewed, so the implication of 
innate immunity and complement activation is still speculative. 
In addition, it is vital to note that the encountered SAEs are dose- 
dependent and are only seen in high-dose trials in which rAAV is 
administered to reach muscles or the CNS.

Despite the roadblocks, AAVs remain one of the most promis-
ing tools for therapeutic gene transfer by far. In addition to adopt-
ing a multidisciplinary approach, further studies are undoubted-
ly required to elucidate the complex mechanisms of the innate 
immune response that is triggered by AAV. Additional preclinical 
studies are also needed to better predict safer doses and biomark-
ers of toxicity, as well as the influence of parameters like empty 
capsid levels, impurities resulting from manufacturing methods, 

mice revealed that only pDCs were capable of producing type 
I IFNs in response to AAV, which in turn leads to a CD8+ T cell 
response (47). Later studies have painted a more complicated 
picture. It was observed that pDCs and cDCs need to cooperate 
to recognize the viral genome via a TLR, present the viral anti-
gen, and activate a CD8+ T cell response (131). According to this 
report, pDCs carry out sensing of nucleic acids via TLR9 and 
produce large amounts of type I IFN, which acts as an activa-
tion signal for cDCs. This process is called “DC licensing” and 
involves the uptake and processing of viral particles by cDCs, 
followed by cross-presentation of AAV capsid proteins, via 
cross-priming of CD8+ T cells (Figure 3A) (131). The cross-pre-
sentation of AAV capsids on MHC class I is proteasome-depen-
dent and is called the cytosolic pathway, which also leads to 
cross-priming of CD8+ T cells (Figure 3B) (133, 134). Antibody 
production against AAV capsids has also been observed (59). 
Capsid peptides are loaded onto MHC class II and present-
ed to CD4+ T cells (Figure 3B) (6, 135, 136). This phenomenon 
was crucially discovered when patients treated with F.IX gene 
therapy (rAAV8-F.IX) showed an initial decrease in F.IX levels 
followed by a subsequent increase after an administration of 
steroids (137, 138). Studies revealed that the AAV-transduced 
hepatocytes were cleared by a capsid-specific CTL response. 
Additional studies in mice and humans indicated that the level 
of capsid-specific antigens presented on target cells determines 
the level of the CTL response (137–139).

A multitude of strategies to directly mute immune cell activa-
tion have been developed. The use of cell type–specific promot-
ers and miRNA-mediated detargeting have been widely explored. 
Promoters — natural and synthetic — have been used for specif-
ic expression in muscle cells but have been found to have leaky 
expression in DCs (140, 141). Incorporation of miR-142 binding 
sites in the 3′-UTR of the transgene has been demonstrated to 
be extremely effective in detargeting transgene expression from 
APCs, thereby suppressing CD8+ T cell activation (141–143). Addi-
tional extensively used strategies are summarized in Table 4.

Table 4. Strategies targeting immune cell mechanisms

Prevention strategy Proposed or demonstrated methods
Proteasome inhibitors • The use of proteasome inhibitors, which reduce ubiquitination to avoid proteasome-mediated degradation, reduces the presentation of capsid peptide 

fragments on MHC class I molecules and enhances in vitro and in vivo transduction (163, 164).
Capsid modification • Mutation of surface-exposed tyrosine residues and reduction in serine and threonine residues on the capsid can lead to increases in transduction by 

preventing its phosphorylation, subsequent ubiquitination, proteasome-mediated degradation, and display of viral peptides on MHC class I molecules 
(165–167).

Cell type–specific promoters • The use of promoters that are inactive in professional APCs — e.g., promoters that are specific for expression in muscle cells, like the MCK, desmin, and 
synthetic C5-12 promoters (168–171) — is the main tactic to reduce transgene expression in APCs. However, these regulatory cassettes have been found 
to have leaky expression in DCs (140, 141).

miRNA-mediated detargeting • Inclusion of binding sites for cognate miRNAs that have high levels of expression in APCs into vectors leads to degradation of transgene transcripts as 
a consequence of host miRNAs and results in the suppression of transgene expression in these cell types (141, 172–176).
• Incorporation of miR-142 binding sites in the 3′-UTR of the transgene has been demonstrated to be extremely effective in detargeting transgene 
expression from cells of the hematopoietic lineage (i.e., DCs and macrophages), and eliminates MHC class I–mediated antigen presentation, thereby 
suppressing CD8+ T cell activation (141–143).

Viral peptides • Several viruses, like HSVs and CMVs, produce small viral proteins that interfere with antigen presentation (177–180).
• These proteins, called viral proteins interfering with antigen presentation (VIPRs), interfere with the MHC class I presentation pathway at essentially 
every step, from antigen degradation to trafficking via the Golgi secretory pathway to the cell surface.
	• Fusion of VIPRs, like ICP47 with mini-dystrophin, decreased antigen presentation and blocked dystrophin-specific CTL response (181).
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and different purification strategies. The greater our understand-
ing of these details, the more interventions and manipulation 
strategies to improve AAV gene therapy will come to light.
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